Cynopterus sphinx, a fruit bat, undergoes delayed embryonic development during the winter months, a period that corresponds to low levels of progesterone and estradiol synthesis by the ovary. Kisspeptins (KPs) are a group of neuropeptide hormones that act via G-protein coupled receptor 54 (GPR54) to stimulate hypothalamic secretion of Gonadotropin-releasing hormone, thereby regulating ovarian steroidogenesis, folliculogenesis, and ovulation. GPR54 is also expressed in the ovary, suggesting a direct role for KPs in ovarian steroidogenesis. The aim of present study was to determine if a low serum level of KP is responsible for reduced progesterone and estradiol levels during the period of delayed embryonic develo... More
Cynopterus sphinx, a fruit bat, undergoes delayed embryonic development during the winter months, a period that corresponds to low levels of progesterone and estradiol synthesis by the ovary. Kisspeptins (KPs) are a group of neuropeptide hormones that act via G-protein coupled receptor 54 (GPR54) to stimulate hypothalamic secretion of Gonadotropin-releasing hormone, thereby regulating ovarian steroidogenesis, folliculogenesis, and ovulation. GPR54 is also expressed in the ovary, suggesting a direct role for KPs in ovarian steroidogenesis. The aim of present study was to determine if a low serum level of KP is responsible for reduced progesterone and estradiol levels during the period of delayed embryonic development in C. sphinx. Indeed, low serum KP abundance corresponded to reduced expression of GPR54 in ovarian luteal cells during the period of delayed development compared to normal development. In vitro and in vivo treatment with KP increased GPR54 abundance, via Extracellular signal regulated kinase and its downstream mediators, leading to increased progesterone synthesis in the ovary during delayed embryonic development. KP treatment also increased cholesterol uptake and elevated expression of Luteinizing hormone receptor and Steroid acute regulatory protein in the ovary, suggesting that elevation in circulating KP during delayed embryonic development may reactivate luteal activity. KPs may also enhance cell survival (BCL-2, reduced Caspase 3 activity) and angiogenesis (Vascular endothelium growth factor) during this period. The findings of this study thus demonstrate a regulatory role for KPs in the maintenance of luteal steroidogenesis during pregnancy in C. sphinx.