MicroRNA-10b (miR-10b) has been reported to be specifically upregulated in glioma tissues and cell lines. The aim of the present study was to investigate the effect of miR-10b-5p on the proliferation and invasion of glioma cells, and the possible underlying molecular mechanism. Cell viability was evaluated using an MTT assay, and flow cytometry was performed for cell cycle analysis. The effects of miR-10b-5p on glioma cell migration and invasion were assessed using wound healing and Transwell assays, respectively. The activity of matrix metalloproteinase 2 (MMP2) was also determined using zymography. Furthermore, homeobox B3 (HOXB3) mRNA expression in glioma cells was examined using quantitative polymer... More
MicroRNA-10b (miR-10b) has been reported to be specifically upregulated in glioma tissues and cell lines. The aim of the present study was to investigate the effect of miR-10b-5p on the proliferation and invasion of glioma cells, and the possible underlying molecular mechanism. Cell viability was evaluated using an MTT assay, and flow cytometry was performed for cell cycle analysis. The effects of miR-10b-5p on glioma cell migration and invasion were assessed using wound healing and Transwell assays, respectively. The activity of matrix metalloproteinase 2 (MMP2) was also determined using zymography. Furthermore, homeobox B3 (HOXB3) mRNA expression in glioma cells was examined using quantitative polymerase chain reaction analysis. The protein expression levels of HOXB3, high mobility group box 1 (HMGB1) and Ras homolog family member C (RhoC) were further measured using western blotting. It was observed that glioma cells transfected with miR-10b-5p inhibitor exhibited significantly decreased proliferation. The wound healing and Transwell assays demonstrated that the miR-10b-5p inhibitor reduced the ability of glioma cells to migrate and invade, while transfection with miR-10b-5p mimic exhibited the opposite effect. HOXB3 was downregulated by miR-10b-5p at both the mRNA and protein levels. In addition, the expression of proteins associated with migration and invasion, including HMGB1, RhoC and MMP2, was upregulated in glioma cells transfected with miR-10b-5p mimic, while these proteins were downregulated in cells transfected with miR-10b-5p inhibitor. Taken together, the findings of the present study indicated that miR-10b-5p downregulation suppressed glioma cell proliferation and invasion, possibly by modulating HOXB3, which may provide a novel bio-target for glioma therapy.