Gene expression is regulated by multiple processes, and the translation of mRNAs into proteins is an especially critical step. Upstream open reading frames (uORFs) are widespread cis-elements in eukaryotic genes that usually suppress the translation of downstream primary ORFs (pORFs). Here, we describe a protocol for fine-tuning gene translation in plants by editing endogenous uORFs with the CRISPR-Cas9 system. The method we present readily yields transgene-free uorf mutant offspring. We provide detailed protocols for predicting uORFs and testing their effects on downstream pORFs using a dual-luciferase reporter system, designing and constructing single guide RNA (sgRNA)-Cas9 vectors, identifying transgene-free... More
Gene expression is regulated by multiple processes, and the translation of mRNAs into proteins is an especially critical step. Upstream open reading frames (uORFs) are widespread cis-elements in eukaryotic genes that usually suppress the translation of downstream primary ORFs (pORFs). Here, we describe a protocol for fine-tuning gene translation in plants by editing endogenous uORFs with the CRISPR-Cas9 system. The method we present readily yields transgene-free uorf mutant offspring. We provide detailed protocols for predicting uORFs and testing their effects on downstream pORFs using a dual-luciferase reporter system, designing and constructing single guide RNA (sgRNA)-Cas9 vectors, identifying transgene-free uorf mutants, and finally comparing the mRNA, protein and phenotypic levels of target genes in uorf mutants and controls. Predicting uORFs and confirming their effects in protoplasts takes only 2-3 weeks, and transgene-free mutants with edited target uORFs controlling different levels of pORF translation can be obtained within 4 months. Unlike previous methods, our strategy achieves fine-tuning of gene translation in transgene-free derivatives, which accelerates the analysis of gene function and the improvement of crop traits.