Near-infrared (NIR) spectra are sensitive to the variation of water structure. In this work, NIR spectroscopy was used to investigate the variation of hydration water during the aggregation of R2/wt induced by heparin. The osmolytes, urea and trehalose, were used to slow down and speed up the aggregation. The spectra of R2/wt aqueous solution obtained by NIR spectroscopy at 37 °C were adopted to analyze the structure of water during the aggregation. The spectral features of different water species were observed by principal component analysis (PCA) from the resolution enhanced NIR spectra. The existence of the water molecules with one and two hydrogen bonds around the NH and CH groups of R2/wt, respectively, ... More
Near-infrared (NIR) spectra are sensitive to the variation of water structure. In this work, NIR spectroscopy was used to investigate the variation of hydration water during the aggregation of R2/wt induced by heparin. The osmolytes, urea and trehalose, were used to slow down and speed up the aggregation. The spectra of R2/wt aqueous solution obtained by NIR spectroscopy at 37 °C were adopted to analyze the structure of water during the aggregation. The spectral features of different water species were observed by principal component analysis (PCA) from the resolution enhanced NIR spectra. The existence of the water molecules with one and two hydrogen bonds around the NH and CH groups of R2/wt, respectively, was suggested, and the variation of the hydrogen-bonded water was found to be an indicator to monitor the process of aggregation. Then, the variation of the water species during the aggregation was analyzed by two-dimensional correlation spectroscopy. The water hydrogen bonded with NH group was found to change earlier than the water around the hydrophobic groups. The results suggest that β-sheet forms though the hydrogen bonds of amide groups in the early stage of the aggregation, and the destruction of the hydrogen bond network of the water around the side chains maybe the main reason for the formation of the ordered amyloid fibers.,Copyright © 2020 Elsevier B.V. All rights reserved.