CD82, a member of the tetraspanins, is originally identified as an accessory molecule in T cell activation, and it participates in the formation of immune synapse both in T cells and antigen-presenting cells of jawed vertebrates. In the present study, a CD82 homologous complementary DNA (cDNA) sequence is identified in the lamprey Lampetra japonica. The open reading frame of this sequence is 801 bp long and encodes a 266-amino acid protein. The multialignment of this sequence with several typical CD82s and CD37s of jawed vertebrates shows that it also possesses their conserved four transmembrane domains and a six-cysteine motif Cys-Cys-Gly…Cys-Ser-Cys…Cys…Cys, which is a characteristic motif of CD82 and ... More
CD82, a member of the tetraspanins, is originally identified as an accessory molecule in T cell activation, and it participates in the formation of immune synapse both in T cells and antigen-presenting cells of jawed vertebrates. In the present study, a CD82 homologous complementary DNA (cDNA) sequence is identified in the lamprey Lampetra japonica. The open reading frame of this sequence is 801 bp long and encodes a 266-amino acid protein. The multialignment of this sequence with several typical CD82s and CD37s of jawed vertebrates shows that it also possesses their conserved four transmembrane domains and a six-cysteine motif Cys-Cys-Gly…Cys-Ser-Cys…Cys…Cys, which is a characteristic motif of CD82 and CD37 vertebrate tetraspanin sequences. Since it is close to CD82s in sequence similarity, we name it as Lja-CD82-like. From the distribution profile of the conserved motifs of CD82-like, CD82, and CD37 molecules from molluscas to mammals, it seems that the CD82s and CD37s evolved from a common ancestral gene through a gene duplication event to their modern forms by a short insertion or substitution approaches. The phylogenetic analysis indicated that CD82 and CD37 molecules of jawed vertebrates originated from a common ancestral gene which is close to agnathan CD82-like and evolved into two distinct paralogous groups maybe after the divergence of jawed and jawless vertebrates. An expression vector with trigger factor (TF) was constructed to ensure that Lja-CD82-like express in prokaryotic expression host. The expressions of Lja-CD82-like messenger RNA (mRNA) and protein in immune-related tissues of lamprey were detected by real-time quantitative polymerase chain reaction and western blotting. Results showed that the mRNA and the protein levels of Lja-CD82-like were significantly upregulated in lymphocyte-like cells, gills, and supraneural myeloid bodies after stimulation with mixed antigens, respectively. Our data provided a foundation for the further study of Lja-CD82-like and its role in immune response process of jawless vertebrates.