Halophilic organisms are found widely in environments where the salt concentration is higher than 0.2 M. Halophilic proteins isolated from these organisms maintain structural integrity and function under high salt stress, whereas their non-halophilic homologs tend to aggregate and collapse. Here we report for the first time the expression and function of a DNA polymerase (DNAPol) VpV262 Pol, which belongs to DNAPol Family A from Vibrio parahaemolyticus phage VpV262. Enzymatic activity assay revealed that VpV262 Pol possessed 5'-3' polymerase activity as well as 3'-5' proofreading exonuclease activity. VpV262 Pol requires Mg or Mn to catalyze the polymerization reaction. Polymerization activity assay under a w... More
Halophilic organisms are found widely in environments where the salt concentration is higher than 0.2 M. Halophilic proteins isolated from these organisms maintain structural integrity and function under high salt stress, whereas their non-halophilic homologs tend to aggregate and collapse. Here we report for the first time the expression and function of a DNA polymerase (DNAPol) VpV262 Pol, which belongs to DNAPol Family A from Vibrio parahaemolyticus phage VpV262. Enzymatic activity assay revealed that VpV262 Pol possessed 5'-3' polymerase activity as well as 3'-5' proofreading exonuclease activity. VpV262 Pol requires Mg or Mn to catalyze the polymerization reaction. Polymerization activity assay under a wide range of salt concentrations showed that VpV262 Pol maintains the highest polymerase activity with 0-0.3 M of NaCl/KCl and 0-0.5 M KAc (potassium acetate) /KGlc (potassium gluconate) when treated with 0-1 M corresponding salts, in contrast to significantly decreased activity of Phi29 Pol and Taq Pol above 0.2 M. Consistent with typical features of other halophilic proteins, negatively-charged amino acids are more frequently distributed on the surface of VpV262 Pol, contributing to highly solubility and enhanced halotolerance. While 3D-Structure of VpV262 Pol needs to be confirmed by experimental data further, this study here has added a member for the relatively small family of halotolerant DNA polymerase, and provides a valuable reference in isolation and characterization of DNA polymerases from halophilic organisms.