Due to their multiple beneficial effects, antioxidant peptides have attracted increasing interest. Currently, the screening and identification of bioactive peptides, including antioxidative peptides based on wet-chemistry methods are time-consuming and highly rely on many advanced instruments and trained personnel. Quantitative structure-activity relationship (QSAR) analysis as an method can be more efficient and cost-effective. However, model performance of QSAR studies on antioxidant peptides was still poor due to limited attempts in model development approaches. The objective of this study was to compare popular machine learning methods for antioxidant activity modeling and screening of tripeptides and iden... More
Due to their multiple beneficial effects, antioxidant peptides have attracted increasing interest. Currently, the screening and identification of bioactive peptides, including antioxidative peptides based on wet-chemistry methods are time-consuming and highly rely on many advanced instruments and trained personnel. Quantitative structure-activity relationship (QSAR) analysis as an method can be more efficient and cost-effective. However, model performance of QSAR studies on antioxidant peptides was still poor due to limited attempts in model development approaches. The objective of this study was to compare popular machine learning methods for antioxidant activity modeling and screening of tripeptides and identify the critical amino acid features that determine the antioxidant activity. 533 numerical indices of amino acids were adopted to characterize 130 tripeptides with known antioxidant activity from the published literature, and then 7 feature selection strategies plus pairwise correlation were used to screen the most important indices for antioxidant activity and model building. 14 machine learning methods were used to build models based on the feature selection strategies, respectively. Among the 98 models, non-linear regression methods tended to perform better, and the best model with an of 0.847 and RMSE of 0.627 for tripeptide antioxidants was obtained by combining random forest for feature selection and tree-based extreme gradient boost regression for model development. Based on the predicted antioxidant values of 7870 unknown tripeptides, potentially high antioxidant activity tripeptides all have a tyrosine, tryptophan, or cysteine residue at the C-terminal position. Furthermore, the predicted antioxidant activity of six synthesized tripeptides was confirmed through experimental determination, and for the first time, the cysteine or tyrosine residue at the C-terminal was found to be critical to the antioxidant activity based on both QSAR models and experimental observations.