background: High-risk human papillomavirus (HPV) is a primary cause of an increasing number of oropharyngeal squamous cell carcinomas (OPSCCs). The viral etiology of these cancers provides the opportunity for antigen-directed therapies that are restricted in scope compared with cancers without viral components. However, specific virally-encoded epitopes and their corresponding immune responses are not fully defined.
methods: To understand the OPSCC immune landscape, we conducted a comprehensive single-cell analysis of HPV16+ and HPV33+ primary tumors and metastatic lymph nodes. We used single-cell analysis with encoded peptide-human leukocyte antigen (HLA) tetramers to analyze HPV16+ and HPV33+ OPSCC tumors, ch... More
background: High-risk human papillomavirus (HPV) is a primary cause of an increasing number of oropharyngeal squamous cell carcinomas (OPSCCs). The viral etiology of these cancers provides the opportunity for antigen-directed therapies that are restricted in scope compared with cancers without viral components. However, specific virally-encoded epitopes and their corresponding immune responses are not fully defined.
methods: To understand the OPSCC immune landscape, we conducted a comprehensive single-cell analysis of HPV16+ and HPV33+ primary tumors and metastatic lymph nodes. We used single-cell analysis with encoded peptide-human leukocyte antigen (HLA) tetramers to analyze HPV16+ and HPV33+ OPSCC tumors, characterizing the ex vivo cellular responses to HPV-derived antigens presented in major Class I and Class II HLA alleles.
results: We identified robust cytotoxic T-cell responses to HPV16 proteins E1 and E2 that were shared across multiple patients, particularly in HLA-A*01:01 and HLA-B*08:01. Responses to E2 were associated with loss of E2 expression in at least one tumor, indicating the functional capacity of these E2-recognizing T cells and many of these interactions validated in a functional assay. Conversely, cellular responses to E6 and E7 were limited in quantity and cytotoxic capacity, and tumor E6 and E7 expression persisted.
conclusions: These data highlight antigenicity beyond HPV16 E6 and E7 and nominate candidates for antigen-directed therapies.