Plastic pollution is an increasing global issue desperately requiring a solution. Only 9% of all plastic waste has been recycled, and whilst recycling gives a second life to plastic, it is costly and there are limited downstream uses of recycled plastic, therefore an alternative is urgently needed. Biodegradation of plastic by microorganisms is a developing field of interest with the potential for bioreactors to be used alongside recycling to degrade plastic that may otherwise be sent to landfill. Here, we have identified two novel polyethylene terephthalate (PET) degrading enzymes through genomic mining and characterised their activity, including their ability to degrade PET. One of the main roadblocks facing ... More
Plastic pollution is an increasing global issue desperately requiring a solution. Only 9% of all plastic waste has been recycled, and whilst recycling gives a second life to plastic, it is costly and there are limited downstream uses of recycled plastic, therefore an alternative is urgently needed. Biodegradation of plastic by microorganisms is a developing field of interest with the potential for bioreactors to be used alongside recycling to degrade plastic that may otherwise be sent to landfill. Here, we have identified two novel polyethylene terephthalate (PET) degrading enzymes through genomic mining and characterised their activity, including their ability to degrade PET. One of the main roadblocks facing the development of microbial enzymes as a plastic biodegradation solution, is that their efficiency is too low to facilitate development as bioremediation tools. In an innovative approach to tackle this roadblock, we hypothesised that enhancing a bacteria's ability to attach to and form a biofilm on plastic could maximise the local concentration of the enzyme around the target substrate, therefore increasing the overall rate of plastic degradation. We found that increasing biofilm levels, by manipulating the levels of the second messenger, Cyclic-di-GMP, led to increased levels of polyester degradation in cells expressing novel and well characterised polyester-degrading enzymes. This indicates that modulating biofilm formation is a viable mechanism to fast track the development of bacterial plastic bioremediation solutions.