Matrix metalloproteinases (MMPs) play a pivotal role in extracellular matrix (ECM) remodeling, influencing various aspects of cancer progression including migration, invasion, angiogenesis, and metastasis. Overexpression of MMPs, particularly MMP-2 and MMP-9, is notably pronounced in glioblastoma multiforme (GBM), a highly aggressive primary brain tumor characterized by diffuse and infiltrative behavior. Previous attempts to develop small molecule MMP inhibitors have failed in clinical trials, necessitating the exploration of more stable and selective alternatives. Tissue inhibitors of metalloproteinases (TIMPs), endogenous human proteins, offer promising potential due to their stability and broader interaction... More
Matrix metalloproteinases (MMPs) play a pivotal role in extracellular matrix (ECM) remodeling, influencing various aspects of cancer progression including migration, invasion, angiogenesis, and metastasis. Overexpression of MMPs, particularly MMP-2 and MMP-9, is notably pronounced in glioblastoma multiforme (GBM), a highly aggressive primary brain tumor characterized by diffuse and infiltrative behavior. Previous attempts to develop small molecule MMP inhibitors have failed in clinical trials, necessitating the exploration of more stable and selective alternatives. Tissue inhibitors of metalloproteinases (TIMPs), endogenous human proteins, offer promising potential due to their stability and broader interaction interfaces compared to small molecule inhibitors. In this study, we examined the effectiveness of wild-type human TIMP-1 and TIMP-3, alongside engineered minimal TIMP variants (mTC1 and mTC3), specifically designed for targeted MMP inhibition to reduce the migratory and invasive capabilities of GBM cells. Our investigation focused on these minimal TIMP variants, which provide enhanced tissue penetration and cellular uptake due to their small molecular weight, aiming to validate their potential as therapeutic agents. The results demonstrated that mTC1 and mTC3 effectively inhibit MMP activity, a critical factor in GBM aggressiveness, thereby highlighting their promise in controlling tumor spread. Given the lethality of GBM and the limited effectiveness of current treatments, the application of engineered TIMP variants represents a novel and potentially transformative therapeutic approach. By offering targeted MMP inhibition, these variants may significantly improve patient outcomes, providing new avenues for treatment and enhancing the survival and quality of life for patients with this devastating disease.