The human pathogen Campylobacter jejuni is naturally competent for transformation with its own DNA. Genes required for efficient transformation in C. jejuni include those similar to components of type II secretion systems found in many Gram-negative bacteria (R. S. Wiesner, D. R. Hendrixson, and V. J. DiRita, J Bacteriol 185:5408-5418, 2003, http://dx.doi.org/10.1128/JB.185.18.5408-5418.2003). Two of these, ctsE and ctsP, encode proteins annotated as putative nucleotide binding nucleoside triphosphatases (NTPases) or nucleoside triphosphate (NTP) binding proteins. Here we demonstrate that the nucleotide binding motifs of both proteins are essential for their function in transformation of C. jejuni. Localization... More
The human pathogen Campylobacter jejuni is naturally competent for transformation with its own DNA. Genes required for efficient transformation in C. jejuni include those similar to components of type II secretion systems found in many Gram-negative bacteria (R. S. Wiesner, D. R. Hendrixson, and V. J. DiRita, J Bacteriol 185:5408-5418, 2003, http://dx.doi.org/10.1128/JB.185.18.5408-5418.2003). Two of these, ctsE and ctsP, encode proteins annotated as putative nucleotide binding nucleoside triphosphatases (NTPases) or nucleoside triphosphate (NTP) binding proteins. Here we demonstrate that the nucleotide binding motifs of both proteins are essential for their function in transformation of C. jejuni. Localization experiments demonstrated that CtsE is a soluble protein while CtsP is membrane associated in C. jejuni. A bacterial two-hybrid screen identified an interaction between CtsP and CtsX, an integral membrane protein also required for transformation. Topological analysis of CtsX by the use of LacZ and PhoA fusions demonstrated it to be a bitopic, integral membrane protein with a cytoplasmic amino terminus and a periplasmic carboxyl terminus. Notwithstanding its interaction with membrane-localized CtsX, CtsP inherently associates with the membrane, requiring neither CtsX nor several other Cts proteins for this association. Copyright 2015, American Society for Microbiology. All Rights Reserved.