In prokaryotes a conserved small RNA molecule, called tmRNA, rescues ribosomes from proteins that are abnormally truncated due to the presence of rare codons or degraded mRNA. During the rescue process, a peptide tag (SsrA) encoded by tmRNA is cotranslationally added to the truncated polypeptides, thereby targeting these proteins for proteolytic degradation. In Escherichia coli, ClpXP and ClpAP proteases primarily degrade SsrA-tagged proteins. Other proteases such as Lon and FtsH also participate in the degradation in E. coli. However, in Bacillus subtilis, ClpXP is the major protease that degrades the SsrA-tagged proteins. Degradation of SsrA-tagged protein in streptococci is not well understood except that Cl... More
In prokaryotes a conserved small RNA molecule, called tmRNA, rescues ribosomes from proteins that are abnormally truncated due to the presence of rare codons or degraded mRNA. During the rescue process, a peptide tag (SsrA) encoded by tmRNA is cotranslationally added to the truncated polypeptides, thereby targeting these proteins for proteolytic degradation. In Escherichia coli, ClpXP and ClpAP proteases primarily degrade SsrA-tagged proteins. Other proteases such as Lon and FtsH also participate in the degradation in E. coli. However, in Bacillus subtilis, ClpXP is the major protease that degrades the SsrA-tagged proteins. Degradation of SsrA-tagged protein in streptococci is not well understood except that ClpXP is responsible for the majority of the degradation. Here we show that in Streptococcus mutans, in addition to ClpXP, two other Clp complexes, ClpCP and ClpEP, are also involved in the degradation. We also found that ClpCP and ClpEP mediated proteolysis of SsrA-tagged substrates is induced by heat stress. Because ClpCP and ClpEP proteins are highly conserved in streptococci, we predict that ClpEP and ClpCP mediated degradation of SsrA-tagged proteins might be operational in other streptococci.