BACKGROUND INFORMATION:
Vascular endothelial cells (ECs) are a well-known cell system used in the study of mechanobiology. Using cultured ECs, we found that platelet EC adhesion molecule 1 (PECAM-1, CD31), a cell adhesion protein localised to regions of EC-EC contact, was rapidly tyrosine phosphorylated in ECs exposed to shear or cyclic stretch. Src-homology 2 domain-containing protein tyrosine phosphatase 2 (SHP2) binds phosphorylated PECAM-1 and activates the extracellular signal-regulated kinase1/2 (ERK1/2) signalling cascade, a known flow-activated signalling pathway.
RESULTS:
Although PECAM-1 tyrosine phosphorylation is characterised in ECs exposed to fluid shear stress, it is less well demonstrated in t... More
BACKGROUND INFORMATION:
Vascular endothelial cells (ECs) are a well-known cell system used in the study of mechanobiology. Using cultured ECs, we found that platelet EC adhesion molecule 1 (PECAM-1, CD31), a cell adhesion protein localised to regions of EC-EC contact, was rapidly tyrosine phosphorylated in ECs exposed to shear or cyclic stretch. Src-homology 2 domain-containing protein tyrosine phosphatase 2 (SHP2) binds phosphorylated PECAM-1 and activates the extracellular signal-regulated kinase1/2 (ERK1/2) signalling cascade, a known flow-activated signalling pathway.
RESULTS:
Although PECAM-1 tyrosine phosphorylation is characterised in ECs exposed to fluid shear stress, it is less well demonstrated in the cells stretched cyclically. Thus, we first show that PECAM-1 is tyrosine-phosphorylated in ECs cyclically stretched. We hypothesise that when an external force is applied to a monolayer of ECs, the force is directly transmitted to PECAM-1 which is then stretched and phosphorylation sites in its cytoplasmic domain are exposed and phosphorylated. This hypothesis requires the presence of any stretchable structure within the PECAM-1 cytoplasmic domain. Force spectroscopy measurements were performed with a construct containing cytoplasmic PECAM-1 domains inserted between I27 motifs, a recombinant string of the structural elements from titin. This strategy allowed us to identify the events in which a single molecule is being pulled and to detect the unravelling of the cytoplasmic domain of PECAM-1 by force. The response by PECAM-1 to mechanical loading was heterogeneous but with magnitudes as high as or higher than the naturally force bearing I27 domains.
CONCLUSIONS:
The PECAM-1 cytoplasmic domain has a structure that can be unfolded by externally applied force and this unfolding of PECAM-1 may be necessary for its phosphorylation, the first step of PECAM-1 mechanosignalling.
SIGNIFICANCE:
When EC monolayers are mechanically stimulated, the PECAM-1 found at EC contacts is phosphorylated. We have proposed that under these conditions, the cytoplasmic domain of PECAM-1 is unfolded, which then exposes a phosphorylation site, allowing it to be accessed. The stretch induced unfolding is essential to this model of PECAM-1 mechanosignalling. In this study, we investigate whether the cytoplasmic domain of PECAM-1 has a stretchable structure, and the results are in line with our hypothesis.