Many efforts have been devoted to improve the performance of dendritic cell (DC)-based cancer vaccines. Ideally, a DC vaccine should induce robust type 1-polarized T-cell responses and efficiently expand antigen (Ag)-specific cytotoxic T-cells, while being applicable regardless of patient human leukocyte antigen (HLA) type. Production time should be short, while maximally being good manufacturing practice (GMP)-compliant. We developed a method that caters to all of these demands and demonstrated the superiority of the resulting product compared with DCs generated using a well-established "classical" protocol.
Many efforts have been devoted to improve the performance of dendritic cell (DC)-based cancer vaccines. Ideally, a DC vaccine should induce robust type 1-polarized T-cell responses and efficiently expand antigen (Ag)-specific cytotoxic T-cells, while being applicable regardless of patient human leukocyte antigen (HLA) type. Production time should be short, while maximally being good manufacturing practice (GMP)-compliant. We developed a method that caters to all of these demands and demonstrated the superiority of the resulting product compared with DCs generated using a well-established "classical" protocol.