Galaxy银河|澳门官网·登录入口

至今,GenScript的服务及产品已被Cell, Nature, Science, PNAS等1300多家生物医药类杂志引用近万次,处于行业领先水平。NIH、哈佛、耶鲁、斯坦福、普林斯顿、杜克大学等约400家全球著名机构使用GenScript的基因合成、多肽服务、抗体服务和蛋白服务等成功地发表科研成果,再次证明GenScript 有能力帮助业内科学家Make research easy.

Thermostable exoshells fold and stabilize recombinant proteins.

Nat Commun. 2017; 
DeshpandeSiddharth,MasurkarNihar D,GirishVallerinteavide Mavelli,DesaiMalan,ChakrabortyGoutam,ChanJuliana M,DrumChest
Products/Services Used Details Operation
Gene Synthesis AfFtn gene was selected based on the sequence in GenBank AF_RS04235. The gene with mutations for C-terminus truncation, as well as altered charges was synthesized from GenScript.The genes for GFPuv (based on the wild-type GFP sequence P42212 with three mutations F99S, M153T, and V163A), HRPc (P00433), and rLuc (P27652) were synthesized from Genscript, digested using SpeI and EagI restriction enzymes, and the resulting fragments ligated with pBAD/HisB using Expresslink T4 DNA ligase. Get A Quote

摘要

The expression and stabilization of recombinant proteins is fundamental to basic and applied biology. Here we have engineered a thermostable protein nanoparticle (tES) to improve both expression and stabilization of recombinant proteins using this technology. tES provides steric accommodation and charge complementation to green fluorescent protein (GFPuv), horseradish peroxidase (HRPc), and Renilla luciferase (rLuc), improving the yields of functional in vitro folding by ~100-fold. Encapsulated enzymes retain the ability to metabolize small-molecule substrates, presumably via four 4.5-nm pores present in the tES shell. GFPuv exhibits no spectral shifts in fluorescence compared to a nonencapsulated contr... More

关键词

XML 地图