Menyanthes trifoliata L. has been used in traditional medicine for centuries. It exists in Asia, Europe, North America and in Morocco and is exploited as a remedy for anemia and lack of appetite. This plant shows many pharmacological properties, but its most interesting one is its anti-cancer potential. The present study examines the induction of apoptosis in grade IV glioma cells after treatment with the extracts from aerial part and root of M. trifoliata plants derived from in vitro (MtAPV and MtRV, respectively) and from soil (MtAPS and MtRS, respectively) and presents the first comparison of the biological effects of four different extracts of M. trifoliata against glioblastoma cells. The root ext... More
Menyanthes trifoliata L. has been used in traditional medicine for centuries. It exists in Asia, Europe, North America and in Morocco and is exploited as a remedy for anemia and lack of appetite. This plant shows many pharmacological properties, but its most interesting one is its anti-cancer potential. The present study examines the induction of apoptosis in grade IV glioma cells after treatment with the extracts from aerial part and root of M. trifoliata plants derived from in vitro (MtAPV and MtRV, respectively) and from soil (MtAPS and MtRS, respectively) and presents the first comparison of the biological effects of four different extracts of M. trifoliata against glioblastoma cells. The root extracts of M. trifoliata plants were found to exhibit cytotoxic effects against grade IV glioma cells, but not normal human astrocytes. HPLC analysis demonstrated the presence of various polyphenolic compounds, including sinapinic acid, ferulic acid, syringic acid and vanilic acid. Higher amount of pentacyclic triterpene (betulinic acid) was also found in MtRV extract. The growth inhibition of human grade IV glioma cells mediated by MtRV extract appears to be associated with apoptosis and G2/M phase cell cycle arrest, and altered expression of the pro- and anti-apoptotic genes (Bax, Bcl-2, Cas-3 and TP53) and proteins (Bax, Bcl-2, Cas-3 and p53), as well as decreased mitochondrial membrane potential. Our results indicate that M. trifoliata gives promising results as an anti-cancer agent for human glioblastoma cell lines. However, further research is necessary in view of its therapeutic use.