Based on its essential role in driving inflammation and disease pathology, cell necrosis has gradually been verified as a promising therapeutic target for treating atherosclerosis, systemic inflammatory response syndrome (SIRS), and ischemia injury, among other diseases. Most necrosis inhibitors targeting receptor-interacting protein 1 (RIP1) still require further optimization because of weak potency or poor metabolic stability. We conducted a phenotypic screen and identified a micromolar hit with novel amide structure. Medicinal chemistry efforts Page 1 of 51 ACS Paragon Plus Environment Journal of Medicinal Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 ... More
Based on its essential role in driving inflammation and disease pathology, cell necrosis has gradually been verified as a promising therapeutic target for treating atherosclerosis, systemic inflammatory response syndrome (SIRS), and ischemia injury, among other diseases. Most necrosis inhibitors targeting receptor-interacting protein 1 (RIP1) still require further optimization because of weak potency or poor metabolic stability. We conducted a phenotypic screen and identified a micromolar hit with novel amide structure. Medicinal chemistry efforts Page 1 of 51 ACS Paragon Plus Environment Journal of Medicinal Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 2 yielded a highly-potent, selective, and metabolically stable drug candidate — compound 56 (RIPA-56). Biochemical studies and molecular docking revealed that RIP1 is the direct target of this new series of type III kinase inhibitors. In the SIRS mice disease model, 56 efficiently reduced tumor necrosis factor alpha (TNFα)-induced mortality and multi-organ damage. Compared to known RIP1 inhibitors, 56 is potent in both human and murine cells, is much more stable in vivo, and is efficacious in animal model studies.