An active cell membrane-camouflaged nanoparticle, owning to membrane antigens and membrane structure, can achieve special properties such as specific recognition, long blood circulation, and immune escaping. Herein, we reported a cancer cell membrane-cloaked nanoparticle system as a theranostic nanoplatform. The biomimetic nanoparticles (indocyanine green (ICG)-loaded and cancer cell membrane-coated nanoparticles, ICNPs) exhibit a core-shell nanostructure consisting of an ICG-polymeric core and cancer cell membrane shell. ICNPs demonstrated specific homologous targeting to cancer cells with good monodispersity, preferable photothermal response, and excellent fluorescence/photoacoustic (FL/PA) im... More
An active cell membrane-camouflaged nanoparticle, owning to membrane antigens and membrane structure, can achieve special properties such as specific recognition, long blood circulation, and immune escaping. Herein, we reported a cancer cell membrane-cloaked nanoparticle system as a theranostic nanoplatform. The biomimetic nanoparticles (indocyanine green (ICG)-loaded and cancer cell membrane-coated nanoparticles, ICNPs) exhibit a core-shell nanostructure consisting of an ICG-polymeric core and cancer cell membrane shell. ICNPs demonstrated specific homologous targeting to cancer cells with good monodispersity, preferable photothermal response, and excellent fluorescence/photoacoustic (FL/PA) imaging properties. Benefited from the functionalization of the homologous binding adhesion molecules from cancer cell membranes, ICNPs significantly promoted cell endocytosis and homologous-targeting tumor accumulation in vivo. Moreover, ICNPs were also good at disguising as cells to decrease interception by the liver and kidney. Through near-infrared (NIR)-FL/PA dual-modal imaging, ICNPs could realize real-time monitored in vivo dynamic distribution with high spatial resolution and deep penetration. Under NIR laser irradiation, ICNPs exhibited highly efficient photothermal therapy to eradicate xenografted tumor. The robust ICNPs with homologous properties of cancer cell membranes can serve as a bionic nanoplatform for cancer-targeted imaging and phototherapy.