The human-immunodeficiency virus (HIV) envelope protein gp120 promotes synaptic damage similar to that observed in people living with HIV who have neurocognitive disorders. The neurotoxic effect of gp120 appears to occur through the α-helix motif that binds to neuronal microtubules (MTs). In this study, we examined the ability of short peptide derivatives from Helix-A, a peptide synthesized based on α-helix structure of gp120, to displace gp120 from binding to MTs and prevent its neurotoxic effects.
The human-immunodeficiency virus (HIV) envelope protein gp120 promotes synaptic damage similar to that observed in people living with HIV who have neurocognitive disorders. The neurotoxic effect of gp120 appears to occur through the α-helix motif that binds to neuronal microtubules (MTs). In this study, we examined the ability of short peptide derivatives from Helix-A, a peptide synthesized based on α-helix structure of gp120, to displace gp120 from binding to MTs and prevent its neurotoxic effects.