Influenza virus A H7N9 remains a serious threat to public health due to the lack of effective vaccines and drugs. In this study, a neutralizing human antibody named 3L11 was rapidly isolated from the switched memory B cells of a patient infected with H7N9. The antibody 3L11 was encoded by the heavy-chain VH1-8 gene and the light-chain VL2-13 gene that had undergone somatic mutations, and conferred high affinity binding to H7N9 hemagglutinins (HAs). It promoted killing of infected cells by antibody-dependent cell-mediated cytotoxicity (ADCC). Epitope mapping by mass spectroscopy (MS) indicated that 3L11 bound to the peptide 149-175 of HAs that contained the 150-loop of the receptor-binding site (RBS). Additi... More
Influenza virus A H7N9 remains a serious threat to public health due to the lack of effective vaccines and drugs. In this study, a neutralizing human antibody named 3L11 was rapidly isolated from the switched memory B cells of a patient infected with H7N9. The antibody 3L11 was encoded by the heavy-chain VH1-8 gene and the light-chain VL2-13 gene that had undergone somatic mutations, and conferred high affinity binding to H7N9 hemagglutinins (HAs). It promoted killing of infected cells by antibody-dependent cell-mediated cytotoxicity (ADCC). Epitope mapping by mass spectroscopy (MS) indicated that 3L11 bound to the peptide 149-175 of HAs that contained the 150-loop of the receptor-binding site (RBS). Additionally, the 3L11 escape strains had G151R (Gly→Arg) and S152P (Ser→Pro) mutations within a conserved antigenic site A near the RBS that were not observed in field strains. Importantly, 3L11 fully protected mice against a lethal H7N9 virus challenge, in both pre- and postexposure administration regimens. Altogether, this work demonstrates the feasibility of rapid isolation of neutralizing H7N9 antibodies from infected patients and provides a potential prophylactic and therapeutic agent against H7N9 viruses.