Impaired manganese (Mn) homeostasis can result in excess Mn accumulation in specific brain regions and neuropathology. Maintaining Mn homeostasis and detoxification is dependent on effective Mn elimination. Specific metal transporters control Mn homeostasis. Human carriers of mutations in the metal transporter ZIP14 and whole-body Zip14 KO (WB-KO) mice display similar phenotypes, including spontaneous systemic and brain Mn overload, and motor dysfunction. Initially, it was believed that Mn accumulation due to ZIP14 mutations caused by impaired hepatobiliary Mn elimination. However, liver-specific Zip14 KO mice (L-KO) did not show systemic Mn accumulation or motor deficits. ZIP14 is highly expressed in the small... More
Impaired manganese (Mn) homeostasis can result in excess Mn accumulation in specific brain regions and neuropathology. Maintaining Mn homeostasis and detoxification is dependent on effective Mn elimination. Specific metal transporters control Mn homeostasis. Human carriers of mutations in the metal transporter ZIP14 and whole-body Zip14 KO (WB-KO) mice display similar phenotypes, including spontaneous systemic and brain Mn overload, and motor dysfunction. Initially, it was believed that Mn accumulation due to ZIP14 mutations caused by impaired hepatobiliary Mn elimination. However, liver-specific Zip14 KO mice (L-KO) did not show systemic Mn accumulation or motor deficits. ZIP14 is highly expressed in the small intestine and is localized to the basolateral surface of enterocytes. Thus we hypothesized that basolaterally-localized ZIP14 in enterocytes provides another route for elimination of Mn. Using wild type and intestine-specific ZIP14 KO (I-KO) mice, we have shown that ablation of intestinal Zip14 is sufficient to cause systemic and brain Mn accumulation. The lack of intestinal ZIP14-mediated Mn excretion was compensated for by the hepatobiliary system; however, it was not sufficient to maintain Mn homeostasis. When supplemented with extra dietary Mn, I-KO mice displayed some motor dysfunctions, brain Mn accumulation based on both MRI imaging and chemical analysis, thus demonstrating the importance of intestinal ZIP14 as a route of Mn excretion. A defect in intestinal Zip14 expresssion likely could contribute to the Parkinson-like Mn accumulation of manganism.