Protein-based detection methods, enzyme-linked immunosorbent assay (ELISA) and lateral flow strip, have been widely used for rapid, spot, and sensitive detection of genetically modified organisms (GMOs). Herein, one novel quantum dot-based fluorescence-linked immunosorbent assay (QD-FLISA) was developed employing quantum dots (QDs) as the fluorescent marker for the detection of the Cry1Ab protein in MON810 maize. The end-point fluorescent detection system was carried out using QDs conjugated with goat anti-rabbit secondary antibody. The newly developed Cry1Ab QD-FLISA assay was highly specific to the Cry1Ab protein and had no cross-reactivity with other target proteins, such as Cry2Ab, Cry1F, and Cry3Bb. The qu... More
Protein-based detection methods, enzyme-linked immunosorbent assay (ELISA) and lateral flow strip, have been widely used for rapid, spot, and sensitive detection of genetically modified organisms (GMOs). Herein, one novel quantum dot-based fluorescence-linked immunosorbent assay (QD-FLISA) was developed employing quantum dots (QDs) as the fluorescent marker for the detection of the Cry1Ab protein in MON810 maize. The end-point fluorescent detection system was carried out using QDs conjugated with goat anti-rabbit secondary antibody. The newly developed Cry1Ab QD-FLISA assay was highly specific to the Cry1Ab protein and had no cross-reactivity with other target proteins, such as Cry2Ab, Cry1F, and Cry3Bb. The quantified linearity was achieved in the value range of 0.05-5% (w/w). The limits of detection (LOD) and quantification (LOQ) of the QD-FLISA were 2.956 and 9.854 pg/mL, respectively, which were more sensitive than the conventional sandwich ELISA method. All of the results indicated that QD-FLISA was a highly specific and sensitive method for the monitoring of Cry1Ab in GMOs.