Alzheimer's disease (AD) is connected to aggregation of amyloid-β (Aβ) peptide and formation of insoluble plaques in the brain. Aβ level can be monitored as an AD early diagnosis route. In this study, an irregular shaped microporous gold nanostructure with a typical size of 150 × 250 nm was electrodeposited on a polycrystalline gold surface at 0 mV (vs. AgCl) using sodium alendronate. The nanostructure was then characterized by field-emission scanning electron microscopy. An electrochemical peptide-based biosensor was fabricated by immobilizing an Aβ(1-42)-binding peptide on the gold nanostructure. Binding of Aβ(1-42) by the peptide was followed electrochemically using ferro/ferricyanide as a redox ... More
Alzheimer's disease (AD) is connected to aggregation of amyloid-β (Aβ) peptide and formation of insoluble plaques in the brain. Aβ level can be monitored as an AD early diagnosis route. In this study, an irregular shaped microporous gold nanostructure with a typical size of 150 × 250 nm was electrodeposited on a polycrystalline gold surface at 0 mV (vs. AgCl) using sodium alendronate. The nanostructure was then characterized by field-emission scanning electron microscopy. An electrochemical peptide-based biosensor was fabricated by immobilizing an Aβ(1-42)-binding peptide on the gold nanostructure. Binding of Aβ(1-42) by the peptide was followed electrochemically using ferro/ferricyanide as a redox probe. Differential pulse voltammograms in a potential range of 0-500 mV (vs. AgCl) with typical peak potentials at 224 mV are linear in the 3-7000 pg mL-1 Aβ(1-42) concentration range, with a 0.2 pg mL-1 detection limit. The biosensor is free of interferences and was applied to the quantitation of Aβ(1-42) in artificial cerebrospinal fluid and spiked serum samples. Graphical abstractSchematic presentation of an immobilized amyloid-β(1-42)-specific peptide on the surface of a microporous gold nanostructure to fabricate an electrochemical biosensor for early diagnosis of Alzheimer's disease. Aβ(1-42) capturing by the peptide led to repulsion of ferrocyanide/ferricyanide redox couple.