Chinese cabbage is the most consumed leafy crop in East Asian countries. However, premature bolting induced by continuous low temperatures severely decreases the yield and quality of the Chinese cabbage, and therefore restricts its planting season and geographic distribution. In the past 40 years, spring Chinese cabbage with strong winterness has been selected to meet the market demand. Here, we report a genome variation map of Chinese cabbage generated from the resequencing data of 194 geographically diverse accessions of three ecotypes. In-depth analyses of the selection sweeps and genome-wide patterns revealed that spring Chinese cabbage was selected from a specific population of autumn Chinese cabbage ar... More
Chinese cabbage is the most consumed leafy crop in East Asian countries. However, premature bolting induced by continuous low temperatures severely decreases the yield and quality of the Chinese cabbage, and therefore restricts its planting season and geographic distribution. In the past 40 years, spring Chinese cabbage with strong winterness has been selected to meet the market demand. Here, we report a genome variation map of Chinese cabbage generated from the resequencing data of 194 geographically diverse accessions of three ecotypes. In-depth analyses of the selection sweeps and genome-wide patterns revealed that spring Chinese cabbage was selected from a specific population of autumn Chinese cabbage around the area of Shandong peninsula in northern China. We identified 23 genomic loci that underwent intensive selection, and further demonstrated by gene expression and haplotype analyses that the incorporation of elite alleles of VERNALISATION INSENTIVE 3.1 (BrVIN3.1) and FLOWER LOCUS C 1 (BrFLC1) is a determinant genetic source of variation during selection. Moreover, we showed that the quantitative response of BrVIN3.1 to cold due to the sequence variations in the cis elements of the BrVIN3.1 promoter significantly contributes to bolting-time variation in Chinese cabbage. Collectively, our study provides valuable insights into the genetic basis of spring Chinese cabbage selection and will facilitate the breeding of bolting-resistant varieties by molecular-marker-assisted selection, transgenic or gene editing approaches.,Copyright © 2018 The Author. Published by Elsevier Inc. All rights reserved.