This chapter discusses a methodology for simultaneously imaging stem cells and endothelial cells within polysaccharide-based scaffolds for tissue engineering. These scaffolds were then implanted into nude mice. Human mesenchymal stem cells (HMSCs) were labeled with the T1-marker Gd(III)-DOTAGA-functionalized polysiloxane nanoparticles (GdNPs), whereas endothelial umbilical vein cells (HUVECs) were labeled with citrate-stabilized maghemite nanoparticles (IONPs), which predominantly shorten the T2-relaxation times of the water molecules in scaffolds and tissue. Dual cell detection was achieved by performing T1- and T2-weighted MRI in both tissue scaffolds and in vivo.
This chapter discusses a methodology for simultaneously imaging stem cells and endothelial cells within polysaccharide-based scaffolds for tissue engineering. These scaffolds were then implanted into nude mice. Human mesenchymal stem cells (HMSCs) were labeled with the T1-marker Gd(III)-DOTAGA-functionalized polysiloxane nanoparticles (GdNPs), whereas endothelial umbilical vein cells (HUVECs) were labeled with citrate-stabilized maghemite nanoparticles (IONPs), which predominantly shorten the T2-relaxation times of the water molecules in scaffolds and tissue. Dual cell detection was achieved by performing T1- and T2-weighted MRI in both tissue scaffolds and in vivo.