Retroviral transduction is routinely used to generate cell lines expressing exogenous non-viral genes. Here, we show that human cells transduced to stably express GFP transfer GFP gene to non-transduced cells. This horizontal gene transfer was mediated by a fraction of extracellular membrane vesicles that were released by the transduced cells. These vesicles carried endogenous retroviral envelope protein syncytin 1 and essentially acted as replication-competent retroviruses. The ability to transfer the GFP gene correlated with the levels of syncytin 1 expression in the transduced cells and depended on the fusogenic activity of this protein, substantiating the hypothesis that endogenous syncytin 1 mediates fusio... More
Retroviral transduction is routinely used to generate cell lines expressing exogenous non-viral genes. Here, we show that human cells transduced to stably express GFP transfer GFP gene to non-transduced cells. This horizontal gene transfer was mediated by a fraction of extracellular membrane vesicles that were released by the transduced cells. These vesicles carried endogenous retroviral envelope protein syncytin 1 and essentially acted as replication-competent retroviruses. The ability to transfer the GFP gene correlated with the levels of syncytin 1 expression in the transduced cells and depended on the fusogenic activity of this protein, substantiating the hypothesis that endogenous syncytin 1 mediates fusion stage in the delivery of extracellular vesicle cargo into target cells. Our findings suggest that testing for replication-competent retroviruses, a routine safety test for transduced cell products in clinical studies, should be also carried out for cell lines generated by retroviral vectors in in vitro studies.