Both the canonical Wnt signaling and androgen signaling are important factors regulating prostate organogenesis. How these two pathways crosstalk to regulate prostate stem cell functions remain unclear. Here, we show that while canonical Wnt activity is required for prostate basal stem cell multipotency in vivo, ectopic Wnt activity does not promote basal-to-luminal cell differentiation. We provide evidence that androgen signaling may keep Wnt activity in check. In prostate organoid culture from basal cells, dihydrotestosterone (DHT) antagonizes R-spondin-stimulated organoid growth in a concentration-dependent manner. Molecular analyses of organoids under different treatment conditions showed that androgen sign... More
Both the canonical Wnt signaling and androgen signaling are important factors regulating prostate organogenesis. How these two pathways crosstalk to regulate prostate stem cell functions remain unclear. Here, we show that while canonical Wnt activity is required for prostate basal stem cell multipotency in vivo, ectopic Wnt activity does not promote basal-to-luminal cell differentiation. We provide evidence that androgen signaling may keep Wnt activity in check. In prostate organoid culture from basal cells, dihydrotestosterone (DHT) antagonizes R-spondin-stimulated organoid growth in a concentration-dependent manner. Molecular analyses of organoids under different treatment conditions showed that androgen signaling down-regulated the expressions of a Wnt reporter as well as many Wnt target genes. Pathway analysis and gene set enrichment analysis of organoid RNA-seq data also revealed the canonical Wnt signaling as a key pathway distinguishing organoids treated with or without DHT. Notably, DHT treatment enhanced AR and β–catenin binding in the nuclei of prostate organoids, providing possible mechanistic clues. Our results reveal a critical role of AR signaling in modulating canonical Wnt activity in prostate basal cells to regulate their multipotency.