The rapid geographic expansion of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the infectious agent of Coronavirus Disease 2019 (COVID-19) pandemic, poses an immediate need for potent drugs that can help contain the outbreak. Enveloped viruses infect the host cell by cellular membrane fusion, a crucial mechanism required for virus replication. The SARS-CoV-2 spike glycoprotein, due to its primary interaction with the human angiotensin-converting enzyme 2 (ACE2) cell-surface receptor, is considered as a potential target for drug development. Based on in silico screening followed by in vitro studies, here we report that the existing FDA-approved Bcr-Abl tyrosine kinase inhibitor, imatinib, inhibi... More
The rapid geographic expansion of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the infectious agent of Coronavirus Disease 2019 (COVID-19) pandemic, poses an immediate need for potent drugs that can help contain the outbreak. Enveloped viruses infect the host cell by cellular membrane fusion, a crucial mechanism required for virus replication. The SARS-CoV-2 spike glycoprotein, due to its primary interaction with the human angiotensin-converting enzyme 2 (ACE2) cell-surface receptor, is considered as a potential target for drug development. Based on in silico screening followed by in vitro studies, here we report that the existing FDA-approved Bcr-Abl tyrosine kinase inhibitor, imatinib, inhibits SARS-CoV-2 with an IC50 of 130 nM. We provide initial evidence that inhibition of virus fusion may explain the antiviral action of imatinib. This finding is significant since pinpointing the mode of action allows evaluating the drug’s affinity to the SARS-CoV-2-specific target protein, and in turn, helps make inferences on the potency of the drug and evidence-based recommendations on its dosage. To this end, we provide evidence that imatinib binds to the receptor-binding domain (RBD) of SARS-CoV-2 spike protein with an affinity at micromolar, i.e., 2.32 ± 0.9 µM, levels. We also show that imatinib inhibits other coronaviruses, SARS-CoV and MERS-CoV, possibly via fusion inhibition. Based on promising in vitro results, we propose the Abl kinase inhibitor (ATKI), imatinib, to be a viable repurposable drug candidate for further clinical validation against COVID-19.