The presentation of proteins on surfaces is fundamental to numerous cell culture and tissue engineering applications. While a number of physisorption and cross-linking methods exist to facilitate this process, few avoid denaturation of proteins or allow control over protein orientation, both of which are critical to the functionality of many signal proteins and ligands. Often recombinant protein sequences include a poly-histidine tag to facilitate purification. We utilize this sequence to anchor proteins to biosurfaces via a peptide bonded to the surface which conjugates with the poly-histidine tag in the presence of zinc rather than nickel, which is more traditionally used to conjugate poly-histidine tags to s... More
The presentation of proteins on surfaces is fundamental to numerous cell culture and tissue engineering applications. While a number of physisorption and cross-linking methods exist to facilitate this process, few avoid denaturation of proteins or allow control over protein orientation, both of which are critical to the functionality of many signal proteins and ligands. Often recombinant protein sequences include a poly-histidine tag to facilitate purification. We utilize this sequence to anchor proteins to biosurfaces via a peptide bonded to the surface which conjugates with the poly-histidine tag in the presence of zinc rather than nickel, which is more traditionally used to conjugate poly-histidine tags to surfaces. We demonstrate that this strategy enables the display of proteins on 2D and 3D surfaces without compromising protein function through direct cross-linking or physisorption.