Compared with the common electrospun nanofibers, the alignment of the nanofibers exhibits interesting anisotropic mechanical properties and structural stability. In this paper, semi-aligned PAN@PVdF-HFP nanofiber separators were prepared by a modified electrospinning method. The composite separators exhibit anisotropic mechanical properties and enhanced electrochemical performance compared with electrospun PAN films. The PAN@PVdF-HFP nanofiber separator can deliver an ionic conductivity of 1.2 mS·cm-1 with electrochemical stability up to 5.0 V. The LiFePO4/Li cell with semi-aligned PAN@PVdF-HFP separator shows excellent cycling performance, good rate capability, as well as high discharge capacity.
Compared with the common electrospun nanofibers, the alignment of the nanofibers exhibits interesting anisotropic mechanical properties and structural stability. In this paper, semi-aligned PAN@PVdF-HFP nanofiber separators were prepared by a modified electrospinning method. The composite separators exhibit anisotropic mechanical properties and enhanced electrochemical performance compared with electrospun PAN films. The PAN@PVdF-HFP nanofiber separator can deliver an ionic conductivity of 1.2 mS·cm-1 with electrochemical stability up to 5.0 V. The LiFePO4/Li cell with semi-aligned PAN@PVdF-HFP separator shows excellent cycling performance, good rate capability, as well as high discharge capacity.