Prime editing is a novel and universal CRISPR/Cas-derived precision genome-editing technology that has been recently developed. However, low efficiency of prime editing has been shown in transgenic rice lines. We hypothesize that enhancing pegRNA expression could improve prime-editing efficiency. In this report, we describe two strategies for enhancing pegRNA expression. We construct a prime editing vector harboring two pegRNA variants for W542L and S621I double mutations in ZmALS1 and ZmALS2. Compared with previous reports in rice, we achieve much higher prime-editing efficiency in maize. Our results are inspiring and provide a direction for the optimization of plant prime editors.
Prime editing is a novel and universal CRISPR/Cas-derived precision genome-editing technology that has been recently developed. However, low efficiency of prime editing has been shown in transgenic rice lines. We hypothesize that enhancing pegRNA expression could improve prime-editing efficiency. In this report, we describe two strategies for enhancing pegRNA expression. We construct a prime editing vector harboring two pegRNA variants for W542L and S621I double mutations in ZmALS1 and ZmALS2. Compared with previous reports in rice, we achieve much higher prime-editing efficiency in maize. Our results are inspiring and provide a direction for the optimization of plant prime editors.