The ClpP1P2 proteolytic complex is essential in (Mtb). Proteolysis by ClpP1P2 requires an associated ATPase, either ClpX or ClpC1. Here, we seek to define the unique contributions of the ClpX ATPase to mycobacterial growth. We formally demonstrate that ClpX is essential for mycobacterial growth and to understand its essential functions, we identify ClpX-His-interacting proteins by pulldown and tandem mass spectrometry. We find an unexpected association between ClpX and proteins involved in DNA replication, and confirm a physical association between ClpX and the essential DNA maintenance protein Single-Stranded DNA Binding protein (SSB). Purified SSB is not degraded by ClpXP1P2; instead SSB enhances ATP hydroly... More
The ClpP1P2 proteolytic complex is essential in (Mtb). Proteolysis by ClpP1P2 requires an associated ATPase, either ClpX or ClpC1. Here, we seek to define the unique contributions of the ClpX ATPase to mycobacterial growth. We formally demonstrate that ClpX is essential for mycobacterial growth and to understand its essential functions, we identify ClpX-His-interacting proteins by pulldown and tandem mass spectrometry. We find an unexpected association between ClpX and proteins involved in DNA replication, and confirm a physical association between ClpX and the essential DNA maintenance protein Single-Stranded DNA Binding protein (SSB). Purified SSB is not degraded by ClpXP1P2; instead SSB enhances ATP hydrolysis by ClpX and degradation of the model substrate GFP-SsrA by ClpXP1P2. This activation of ClpX is mediated by the C-terminal tail of SSB that had been implicated in the activation of other ATPases associated with DNA replication. Consistent with the predicted interactions, depletion of transcript perturbs DNA replication. These data reveal that ClpX participates in DNA replication and identify the first activator of ClpX in mycobacteria. Tuberculosis, caused by , imposes a major global health burden, surpassing HIV and malaria in annual deaths. The ClpP1P2 proteolytic complex and its cofactor ClpX are attractive drug targets, but their precise cellular functions are unclear. This work confirms ClpX's essentiality and describes a novel interaction between ClpX and SSB, a component of the DNA replication machinery. Further, we demonstrate that a loss of ClpX is sufficient to interrupt DNA replication, suggesting the ClpX-SSB complex may play a role in DNA replication in mycobacteria.