In recent years, biomarkers have played more extensive roles as indicators of disease progression, safety, and drug efficacy. Targeted quantitative analysis of biomarkers including drug targets have become increasingly important to drive critical decision-making in various drug development stages, as well as to improve the success rates of clinical trials. There are many analytical challenges when developing and validating the bioanalytical methods associated with the measurement of an endogenous protein biomarker, especially when using LC-MS based analysis. Moreover, the current regulatory guidelines for assay development and validation using LC-MS platform mainly focuse on regulated bioanalysis for therapeuti... More
In recent years, biomarkers have played more extensive roles as indicators of disease progression, safety, and drug efficacy. Targeted quantitative analysis of biomarkers including drug targets have become increasingly important to drive critical decision-making in various drug development stages, as well as to improve the success rates of clinical trials. There are many analytical challenges when developing and validating the bioanalytical methods associated with the measurement of an endogenous protein biomarker, especially when using LC-MS based analysis. Moreover, the current regulatory guidelines for assay development and validation using LC-MS platform mainly focuse on regulated bioanalysis for therapeutic drugs. In this manuscript, we use total soluble CD73 (sCD73) as an example to present a "fit-for-purpose" assay using a hybrid immunocapture-LC-MS/MS assay platform. A non-competing antibody (to the therapeutic drug) was used to isolate and enrich the total sCD73 from biological matrix. The enriched sample was digested after immunocapture and a surrogate peptide was monitored for quantification. The assay showed good accuracy, precision, specificity and sensitivity with the LLOQ of 1.00 ng/mL, and was applied in a clinical study to measure the total sCD73 as a potential pharmacodynamic (PD) marker. Some recommendations and considerations for "fit-for-purpose" validation of this assay, and hybrid LC-MS assays in general, for the quantitative analysis of an endogenous protein biomarkers is also discussed.