In the current study, the whale shark (ws; Rhincodon typus) melanocortin-2 receptor (MC2R) co-expressed with wsMRAP1 in Chinese Hamster Ovary (CHO) Cells could be stimulated in a dose dependent manner by ACTH(1-24) with an EC of 2.6 × 10 M ± 9.7 × 10. When the receptor was expressed alone, stimulation was only observed at [10 M]. A comparable increase in sensitivity to stimulation by srDes-Ac-αMSH was also observed when the receptor was co-expressed with wsMRAP1. In addition, co-expression with wsMRAP1 significantly increased the trafficking of wsMC2R to the plasma membrane of CHO cells. Surprisingly, co-expression with wsMRAP2 also increased sensitivity to stimulation by ACTH(1-24) and srDes-Ac-αM... More
In the current study, the whale shark (ws; Rhincodon typus) melanocortin-2 receptor (MC2R) co-expressed with wsMRAP1 in Chinese Hamster Ovary (CHO) Cells could be stimulated in a dose dependent manner by ACTH(1-24) with an EC of 2.6 × 10 M ± 9.7 × 10. When the receptor was expressed alone, stimulation was only observed at [10 M]. A comparable increase in sensitivity to stimulation by srDes-Ac-αMSH was also observed when the receptor was co-expressed with wsMRAP1. In addition, co-expression with wsMRAP1 significantly increased the trafficking of wsMC2R to the plasma membrane of CHO cells. Surprisingly, co-expression with wsMRAP2 also increased sensitivity to stimulation by ACTH(1-24) and srDes-Ac-αMSH, and increased trafficking of the receptor to the plasma membrane. These observations are in sharp contrast to the response of MC2R orthologs of bony vertebrates which have an obligate requirement for co-expression with MRAP1 for both trafficking to the plasma membrane and activation, and while co-expression with MRAP2 increases trafficking, it has minimal effects on activation. In addition, when comparing the activation features of wsMC2R with those of the elephant shark MC2R and red stingray MC2R orthologs, both similarities and differences are observed. The spectrum of features for cartilaginous fish MC2R orthologs will be discussed. A second objective of this study was to determine whether wsMC5R has features in common with wsMC2R in terms of ligand selectivity and interaction with wsMRAP paralogs. While wsMC5R can be activated by either srACTH(1-24) or srDes-Ac-αMSH, and co-expression with wsMRAP1 enhances this activation, wsMRAP1 had no effect on the trafficking of wsMC5R. Co-expression with wsMRAP2 had no positive or negative effect on either ligand sensitivity or trafficking of wsMC5R.