SummaryThe protozoan parasite Toxoplasma gondii is the causative agent of a worldwide zoonosis and high prevalencies can be found both in animals and humans. An important source of human contamination with T. gondii is the consumption of raw or undercooked meat products. In this study, we evaluated whether DNA vaccination against T. gondii in pigs is able to generate immune responses known to be protective against tissue cyst formation. A GRA1–GRA7 DNA vaccine cocktail was enhanced by codon optimization of the encoding antigens and addition of heat labile enterotoxin expressing vectors as genetic adjuvant. Pigs vaccinated intradermally with this enhanced GRA1–GRA7 DNA vaccine cocktail developed high... More
SummaryThe protozoan parasite Toxoplasma gondii is the causative agent of a worldwide zoonosis and high prevalencies can be found both in animals and humans. An important source of human contamination with T. gondii is the consumption of raw or undercooked meat products. In this study, we evaluated whether DNA vaccination against T. gondii in pigs is able to generate immune responses known to be protective against tissue cyst formation. A GRA1–GRA7 DNA vaccine cocktail was enhanced by codon optimization of the encoding antigens and addition of heat labile enterotoxin expressing vectors as genetic adjuvant. Pigs vaccinated intradermally with this enhanced GRA1–GRA7 DNA vaccine cocktail developed high antibody levels against GRA1, GRA7 and a T. gondii lysate, and lymphocyte proliferation and production of IFN-Γ could be detected in these animals after challenge with the parasite. These results indicate that pigs can be efficiently primed against T. gondii infection by means of a DNA vaccine.