Dysfunctional dopaminergic neurotransmission is central to movement disorders and mental diseases. The dopamine transporter (DAT) regulates extracellular dopamine levels but the genetic and mechanistic link between DAT function and dopamine-related pathologies is not clear. Particularly, the pathophysiological significance of monoallelic missense mutations in DAT is unknown. Here we use clinical information, neuroimaging, and large-scale exome sequencing data to uncover the occurrence and phenotypic spectrum of a novel DAT coding variant, DAT-K619N, which localizes to the critical C-terminal PDZ-binding motif of human (h)DAT. We identified the rare, but recurrent hDAT-K619N variant in exome-sequenced samples of... More
Dysfunctional dopaminergic neurotransmission is central to movement disorders and mental diseases. The dopamine transporter (DAT) regulates extracellular dopamine levels but the genetic and mechanistic link between DAT function and dopamine-related pathologies is not clear. Particularly, the pathophysiological significance of monoallelic missense mutations in DAT is unknown. Here we use clinical information, neuroimaging, and large-scale exome sequencing data to uncover the occurrence and phenotypic spectrum of a novel DAT coding variant, DAT-K619N, which localizes to the critical C-terminal PDZ-binding motif of human (h)DAT. We identified the rare, but recurrent hDAT-K619N variant in exome-sequenced samples of patients with neuropsychiatric diseases and a patient with early-onset, neurodegenerative parkinsonism and comorbid neuropsychiatric disease. We show that hDAT-K619N displays reduced uptake capacity, decreased surface expression, and accelerated turnover in cell cultures. Unilateral expression in mouse nigrostriatal neurons revealed differential effects of hDAT-K619N and hDAT-WT on dopamine-directed behaviors, and hDAT-K619N expression in Drosophila leads to impairments in dopamine transmission with accompanying hyperlocomotion and age-dependent disturbances of the negative geotactic response. Moreover, cellular studies and viral expression of hDAT-K619N in mice demonstrated a dominant-negative effect of the hDAT-K619N mutant. Summarized, our results suggest that hDAT-K619N can effectuate dopamine dysfunction of pathological relevance in a dominant-negative manner.