Background/goal/aim: The tetracenomycins are aromatic anticancer polyketides that inhibit peptide translation via binding to the large ribosomal subunit. Here, we expressed the elloramycin biosynthetic gene cluster in the heterologous host Streptomyces coelicolor M1146 to facilitate the downstream production of tetracenomycin analogs.
Main methods and major results: We developed a BioBricks genetic toolbox of genetic parts for substrate precursor engineering in S. coelicolor M1146::cos16F4iE. We cloned a series of integrating vectors based on the VWB, TG1, and SV1 integrase systems to interrogate gene expression in the chromosome. We genetically engineered three separate genetic constructs to modulate tetrace... More
Background/goal/aim: The tetracenomycins are aromatic anticancer polyketides that inhibit peptide translation via binding to the large ribosomal subunit. Here, we expressed the elloramycin biosynthetic gene cluster in the heterologous host Streptomyces coelicolor M1146 to facilitate the downstream production of tetracenomycin analogs.
Main methods and major results: We developed a BioBricks genetic toolbox of genetic parts for substrate precursor engineering in S. coelicolor M1146::cos16F4iE. We cloned a series of integrating vectors based on the VWB, TG1, and SV1 integrase systems to interrogate gene expression in the chromosome. We genetically engineered three separate genetic constructs to modulate tetracenomycin biosynthesis: (1) the vhb hemoglobin from obligate aerobe Vitreoscilla stercoraria to improve oxygen utilization; (2) the accA2BE acetyl-CoA carboxylase to enhance condensation of malonyl-CoA; (3) lastly, the sco6196 acyltransferase, which is a "metabolic regulatory switch" responsible for mobilizing triacylglycerols to β-oxidation machinery for acetyl-CoA. In addition, we engineered the tcmO 8-O-methyltransferase and newly identified tcmD 12-O-methyltransferase from Amycolatopsis sp. A23 to generate tetracenomycins C and X. We also co-expressed the tcmO methyltransferase with oxygenase urdE to generate the analog 6-hydroxy-tetracenomycin C.
Conclusions and implications: Altogether, this system is compatible with the BioBricks [RFC 10] cloning standard for the co-expression of multiple gene sets for metabolic engineering of Streptomyces coelicolor M1146::cos16F4iE. This production platform improves access to potent analogs, such as tetracenomycin X, and sets the stage for the production of new tetracenomycins via combinatorial biosynthesis.