(1) Background: The cathelicidin peptide LL-37 is a prominent molecule with many biological activities, including antimicrobial. Due to its importance, here, we describe the production of LL-37 tagged with SmbP, a relatively new carrier protein that improves the production of recombinant proteins and peptides in . We present an alternative method for the rapid expression, purification, and antimicrobial evaluation of LL-37, that involves only one purification step. (2) Methods: A DNA construct of SmbP_LL-37 was transformed into BL21(DE3); after overnight expression, the protein was purified directly from the cell lysate using immobilized metal-affinity chromatography. SmbP_LL-37 was treated with Enterokinase t... More
(1) Background: The cathelicidin peptide LL-37 is a prominent molecule with many biological activities, including antimicrobial. Due to its importance, here, we describe the production of LL-37 tagged with SmbP, a relatively new carrier protein that improves the production of recombinant proteins and peptides in . We present an alternative method for the rapid expression, purification, and antimicrobial evaluation of LL-37, that involves only one purification step. (2) Methods: A DNA construct of SmbP_LL-37 was transformed into BL21(DE3); after overnight expression, the protein was purified directly from the cell lysate using immobilized metal-affinity chromatography. SmbP_LL-37 was treated with Enterokinase to obtain the free LL-37 peptide. The antimicrobial activity of both SmbP_LL-37 and free LL-37 was determined using the colony forming unit assay method. (3) Results: SmbP_LL-37 was observed in the soluble fraction of the cell lysate; after purification with IMAC, protein gel electrophoresis, and analysis by ImageJ, it showed 90% purity. A total of 3.6 mg of SmbP_LL-37 was produced from one liter of cell culture. SmbP_LL-37 and free LL-37 both showed inhibition activity against and . (4) Conclusions: The SmbP fusion protein is a valuable tool for producing biologically-active LL-37 peptide. The production method described here should be of interest for the expression and purification of additional cationic peptides, since it cuts the purification time considerably prior to determination of antimicrobial activity.