background: Macrophages are important cells of the innate immune system and contribute to a variety of physiological and pathophysiological responses. Monovalent and divalent ion channels have been studied in macrophage function, and while much research is still required, a role for these channels is beginning to emerge in macrophages. In addition to the plasma membrane, ion channels are also found in intracellular membranes including mitochondrial, lysosomal and nuclear membranes. While studying the function of plasma membrane located large conductance voltage- and calcium-activated potassium channels (BK channels) in a macrophage cell line RAW264.7, we became aware of the expression of these ion channels in o... More
background: Macrophages are important cells of the innate immune system and contribute to a variety of physiological and pathophysiological responses. Monovalent and divalent ion channels have been studied in macrophage function, and while much research is still required, a role for these channels is beginning to emerge in macrophages. In addition to the plasma membrane, ion channels are also found in intracellular membranes including mitochondrial, lysosomal and nuclear membranes. While studying the function of plasma membrane located large conductance voltage- and calcium-activated potassium channels (BK channels) in a macrophage cell line RAW264.7, we became aware of the expression of these ion channels in other cellular locations.
methods: Immunofluorescence and Western blot analysis were used to identify the expression of BK channels. To demonstrate a functional role for the nuclear located channel, we investigated the effect of the lipid soluble BK channel inhibitor paxilline on CREB phosphorylation.
results: Treatment of resting macrophages with paxilline resulted in increased CREB phosphorylation. To confirm a role for nuclear BK channels, these experiments were repeated in isolated nuclei and similar results were found. Ca and calmodulin-dependent kinases (CaMK) have been demonstrated to regulate CREB phosphorylation. Inhibition of CaMKII and CaMKIV resulted in the reversal of paxilline-induced CREB phosphorylation.
conclusions: These results suggest that nuclear BK channels regulate CREB phosphorylation in macrophages. Nuclear located ion channels may therefore be part of novel signalling pathways in macrophages and should be taken into account when studying the role of ion channels in these and other cells.