The p28 peptide derived from Pseudomonas aeruginosa azurin shows an anticancer activity after binding to p53 protein and is currently in Phase I of clinical trials. We have studied its structure in water and in a biomimetic media and show that the peptide is unstructured in water but when studied in a biomimetic medium assumes a structure very similar to the one observed in azurin, suggesting a high propensity of this peptide to maintain this secondary structure. Analysis of p28 sequences from different bacterial species indicates conservation of the secondary structure despite amino acid replacement in different positions, suggesting that others, similar peptides could be tested for binding to p53.
The p28 peptide derived from Pseudomonas aeruginosa azurin shows an anticancer activity after binding to p53 protein and is currently in Phase I of clinical trials. We have studied its structure in water and in a biomimetic media and show that the peptide is unstructured in water but when studied in a biomimetic medium assumes a structure very similar to the one observed in azurin, suggesting a high propensity of this peptide to maintain this secondary structure. Analysis of p28 sequences from different bacterial species indicates conservation of the secondary structure despite amino acid replacement in different positions, suggesting that others, similar peptides could be tested for binding to p53.