The guinea pig is the only small animal model for congenital cytomegalovirus (CMV) but requires species-specific guinea pig cytomegalovirus (GPCMV). Infection of epithelial cells and trophoblasts by GPCMV requires the viral glycoprotein pentamer complex (PC) and endocytic entry because of the absence of platelet-derived growth factor receptor alpha (PDGFRA). Endothelial cells represent an important cell type for infection, dissemination in the host, and disease but have been poorly evaluated for GPCMV. Novel endothelial cell lines were established from animal vascular systems, including aorta (EndoC) and placental umbilical cord vein (GPUVEC). Cell lines were characterized for endothelial cell protein markers (... More
The guinea pig is the only small animal model for congenital cytomegalovirus (CMV) but requires species-specific guinea pig cytomegalovirus (GPCMV). Infection of epithelial cells and trophoblasts by GPCMV requires the viral glycoprotein pentamer complex (PC) and endocytic entry because of the absence of platelet-derived growth factor receptor alpha (PDGFRA). Endothelial cells represent an important cell type for infection, dissemination in the host, and disease but have been poorly evaluated for GPCMV. Novel endothelial cell lines were established from animal vascular systems, including aorta (EndoC) and placental umbilical cord vein (GPUVEC). Cell lines were characterized for endothelial cell protein markers (PECAM1, vWF, and FLI1) and evaluated for GPCMV infection. Only PC-positive virus was capable of infecting endothelial cells. Individual knockout mutants for unique PC components (GP129, GP131, and GP133) were unable to infect endothelial cells without impacting fibroblast infection. Ectopic expression of PDGFRA in EndoC cells enabled GPCMV(PC) infection via direct cell entry independent of the PC. Neutralizing antibodies to the essential viral gB glycoprotein were insufficient to prevent endothelial cell infection, which also required antibodies to gH/gL and the PC. Endothelial cell infection was also dependent upon viral tegument pp65 protein (GP83) to counteract the IFI16/cGAS-STING innate immune pathway, similar to epithelial cell infection. GPCMV endothelial cells were lytically (EndoC) or persistently (GPUVEC) infected dependent on tissue origin. The ability to establish a persistent infection in the umbilical cord could potentially enable sustained and more significant infection of the fetus . Overall, results demonstrate the importance of this translationally relevant model for CMV research. Congenital CMV is a leading cause of cognitive impairment and deafness in newborns, and a vaccine is a high priority. The only small animal model for congenital CMV is the guinea pig and guinea pig cytomegalovirus (GPCMV) encoding functional HCMV homolog viral glycoprotein complexes necessary for cell entry that are neutralizing-antibody vaccine targets. Endothelial cells are important in HCMV for human disease and viral dissemination. GPCMV endothelial cell infection requires the viral pentamer complex (PC), which further increases the importance of this complex as a vaccine target, as antibodies to the immunodominant and essential viral glycoprotein gB fail to prevent endothelial cell infection. GPCMV endothelial cell infection established either a fully lytic or a persistent infection, depending on tissue origin. The potential for persistent infection in the umbilical cord potentially enables sustained infection of the fetus , likely increasing the severity of congenital disease.