Under climate change, the spread of pests and pathogens into new environments has a dramatic effect on crop protection control. Strawberry ( spp.) is one the most profitable crops of the Rosaceae family worldwide, but more than 50 different genera of pathogens affect this species. Therefore, accelerating the improvement of fruit quality and pathogen resistance in strawberry represents an important objective for breeding and reducing the usage of pesticides. New genome sequencing data and bioinformatics tools has provided important resources to expand the use of synthetic biology-assisted intragenesis strategies as a powerful tool to accelerate genetic gains in strawberry. In this paper, we took advantage of the... More
Under climate change, the spread of pests and pathogens into new environments has a dramatic effect on crop protection control. Strawberry ( spp.) is one the most profitable crops of the Rosaceae family worldwide, but more than 50 different genera of pathogens affect this species. Therefore, accelerating the improvement of fruit quality and pathogen resistance in strawberry represents an important objective for breeding and reducing the usage of pesticides. New genome sequencing data and bioinformatics tools has provided important resources to expand the use of synthetic biology-assisted intragenesis strategies as a powerful tool to accelerate genetic gains in strawberry. In this paper, we took advantage of these innovative approaches to create four RNAi intragenic silencing cassettes by combining specific strawberry new promoters and pathogen defense-related candidate DNA sequences to increase strawberry fruit quality and resistance by silencing their corresponding endogenous genes, mainly during fruit ripening stages, thus avoiding any unwanted effect on plant growth and development. Using a fruit transient assay, expression was detected by the two synthetic and promoters, both by histochemical assay and qPCR analysis of GUS transcript levels, thus ensuring the ability of the same to drive the expression of the silencing cassettes in this strawberry tissue. The approaches described here represent valuable new tools for the rapid development of improved strawberry lines.