unassigned: Sporadic Inclusion Body Myositis (IBM) is an inflammatory muscle disease affecting individuals over the age of 45, leading to progressive muscle wasting, disability and loss of independence. Histologically, IBM is characterised by immune changes including myofibres expressing major histocompatibility complex molecules and invaded by CD8 T cells and macrophages, and by degenerative changes including protein aggregates organised in inclusion bodies, rimmed vacuoles and mitochondrial abnormalities. There is currently no cure, and regular exercise is currently the only recognised treatment effective at limiting muscle weakening, atrophy and loss of function. Testosterone exerts anti-inflammatory effects... More
unassigned: Sporadic Inclusion Body Myositis (IBM) is an inflammatory muscle disease affecting individuals over the age of 45, leading to progressive muscle wasting, disability and loss of independence. Histologically, IBM is characterised by immune changes including myofibres expressing major histocompatibility complex molecules and invaded by CD8 T cells and macrophages, and by degenerative changes including protein aggregates organised in inclusion bodies, rimmed vacuoles and mitochondrial abnormalities. There is currently no cure, and regular exercise is currently the only recognised treatment effective at limiting muscle weakening, atrophy and loss of function. Testosterone exerts anti-inflammatory effects, inhibiting effector T-cell differentiation and pro-inflammatory cytokine production.
unassigned: We conducted a double-blind, placebo-controlled, cross-over trial in men with IBM, to assess whether a personalised progressive exercise training combined with application of testosterone, reduced the inflammatory immune response associated with this disease over and above exercise alone. To assess intervention efficacy, we immunophenotyped blood immune cells by flow cytometry, and measured serum cytokines and chemokines by Luminex immunoassay.
unassigned: Testosterone supplementation resulted in modest yet significant count reduction in the classical monocyte subset as well as eosinophils. Testosterone-independent immunoregulatory effects attributed to exercise included altered proportions of some monocyte, T- and B-cell subsets, and reduced IL-12, IL-17, TNF-α, MIP-1β and sICAM-1 in spite of interindividual variability.
unassigned: Overall, our findings indicate anti-inflammatory effects of exercise training in IBM patients, whilst concomitant testosterone supplementation provides some additional changes. Further studies combining testosterone and exercise would be worthwhile in larger cohorts and longer testosterone administration periods.