It has been established that enhancement of serotonergic transmission contributes to improvement of major depression; however, several post-mortem studies and experimental depression rodent models suggest that functional abnormalities of astrocytes play important roles in the pathomechanisms/pathophysiology of mood disorders. Direct effects of serotonin (5-HT) transporter inhibiting antidepressants on astroglial transmission systems has never been assessed in this context. Therefore, to explore the effects of antidepressants on transmission associated with astrocytes, the present study determined the effects of the selective 5-HT transporter inhibitor, escitalopram, and the 5-HT partial agonist reuptake inhibit... More
It has been established that enhancement of serotonergic transmission contributes to improvement of major depression; however, several post-mortem studies and experimental depression rodent models suggest that functional abnormalities of astrocytes play important roles in the pathomechanisms/pathophysiology of mood disorders. Direct effects of serotonin (5-HT) transporter inhibiting antidepressants on astroglial transmission systems has never been assessed in this context. Therefore, to explore the effects of antidepressants on transmission associated with astrocytes, the present study determined the effects of the selective 5-HT transporter inhibitor, escitalopram, and the 5-HT partial agonist reuptake inhibitor, vortioxetine, on astroglial L-glutamate release through activated hemichannels, and the expression of connexin43 (Cx43), type 1A (5-HT1AR) and type 7 (5-HT7R) 5-HT receptor subtypes, and extracellular signal-regulated kinase (ERK) in astrocytes using primary cultured rat cortical astrocytes in a 5-HT-free environment. Both escitalopram and 5-HT1AR antagonist (WAY100635) did not affect basal astroglial L-glutamate release or L-glutamate release through activated hemichannels. Subchronic (for seven days) administrations of vortioxetine and the 5-HT7R inverse agonist (SB269970) suppressed both basal L-glutamate release and L-glutamate release through activated hemichannels, whereas 5-HT1AR agonist (BP554) inhibited L-glutamate release through activated hemichannels, but did not affect basal L-glutamate release. In particular, WAY100635 did not affect the inhibitory effects of vortioxetine on L-glutamate release. Subchronic administration of vortioxetine, BP554 and SB269970 downregulated 5-HT1AR, 5-HT7R and phosphorylated ERK in the plasma membrane fraction, but escitalopram and WAY100635 did not affect them. Subchronic administration of SB269970 decreased Cx43 expression in the plasma membrane but did not affect the cytosol; however, subchronic administration of BP554 increased Cx43 expression in the cytosol but did not affect the plasma membrane. Subchronic vortioxetine administration increased Cx43 expression in the cytosol and decreased it in the plasma membrane. WAY100635 prevented an increased Cx43 expression in the cytosol induced by vortioxetine without affecting the reduced Cx43 expression in the plasma membrane. These results suggest that 5-HT1AR downregulation probably increases Cx43 synthesis, but 5-HT7R downregulation suppresses Cx43 trafficking to the plasma membrane. These results also suggest that the subchronic administration of therapeutic-relevant concentrations of vortioxetine inhibits both astroglial L-glutamate and Cx43 expression in the plasma membrane via 5-HT7R downregulation but enhances Cx43 synthesis in the cytosol via 5-HT1AR downregulation. This combination of the downregulation of 5-HT1AR, 5-HT7R and Cx43 in the astroglial plasma membrane induced by subchronic vortioxetine administration suggest that astrocytes is possibly involved in the pathophysiology of depression.