Adenylate kinase (ADK) is widely distributed in organisms and plays an important role in cellular energy homeostasis. In plants, ADK has important functions in plant growth and development regulation as well as in adaptation to the environment. However, little information is available about the genes in tomato (), an important economic crop. To investigate the characteristics and functions of genes in tomato, a total of 11 genes were identified and named according to their chromosomal locations. The ADK family in Arabidopsis, tomato, potato, and rice was divided into six groups, and motif analysis revealed that each SlADK protein contained five to eight conserved motifs. A total of 4 to 19 exons were identif... More
Adenylate kinase (ADK) is widely distributed in organisms and plays an important role in cellular energy homeostasis. In plants, ADK has important functions in plant growth and development regulation as well as in adaptation to the environment. However, little information is available about the genes in tomato (), an important economic crop. To investigate the characteristics and functions of genes in tomato, a total of 11 genes were identified and named according to their chromosomal locations. The ADK family in Arabidopsis, tomato, potato, and rice was divided into six groups, and motif analysis revealed that each SlADK protein contained five to eight conserved motifs. A total of 4 to 19 exons were identified in tomato gene family members, and interestingly, most members possessed 4 exons. Several stress response elements were identified in the promoter regions of . The 11 were randomly distributed on 9 of the 12 tomato chromosomes. Three duplication events were observed between tomato chromosomes, and a high degree of conservation of synteny was demonstrated between tomato and potato. The online TomExpress platform prediction revealed that were expressed in various tissues and organs, basically consistent with the data obtained from real-time quantitative PCR (qPCR). The qPCR verification was also performed to determine the expression level of and demonstrated that the genes responded to multiple abiotic stresses, such as drought, salt, and cold. Besides, the qPCR results showed that transcription was responsive to most of the applied hormone treatment. For correlation network analysis under 44 global conditions, the results showed that the number of 17, 3, 4, and 6 coexpressed genes matched with , , , and , respectively. For specific gene function analysis, expression of was inhibited using virus-induced gene silencing (VIGS). Compared to wild-type plants, plants with silenced gene had poor drought resistance, indicating regulated drought tolerance of tomato positively. In summary, the information provided in the present study will be helpful to understand the evolutionary relationship and their roles of tomato gene family in further research.