background: Nitrogen (N) is an essential macronutrient to maintain plant growth and development. Plants absorb nitrate-N or ammonium-N in the environment and undergo reduction reactions catalyzed by nitrate reductase (NR), nitrite reductase (NIR), glutamine synthetase (GS), and glutamine oxoglutarate aminotransferase (GOGAT) within plants.
results: A total of 42 N assimilation-related genes (NAG) members were identified in rapeseed. Darwin's evolutionary pressure analysis showed that rapeseed NAGs underwent purification selection. Cis-element analysis revealed differences in the transcriptional regulation of NAGs between Arabidopsis and rapeseed. Expression analyses revealed that NRs were expressed mainly in ol... More
background: Nitrogen (N) is an essential macronutrient to maintain plant growth and development. Plants absorb nitrate-N or ammonium-N in the environment and undergo reduction reactions catalyzed by nitrate reductase (NR), nitrite reductase (NIR), glutamine synthetase (GS), and glutamine oxoglutarate aminotransferase (GOGAT) within plants.
results: A total of 42 N assimilation-related genes (NAG) members were identified in rapeseed. Darwin's evolutionary pressure analysis showed that rapeseed NAGs underwent purification selection. Cis-element analysis revealed differences in the transcriptional regulation of NAGs between Arabidopsis and rapeseed. Expression analyses revealed that NRs were expressed mainly in old leaves, NIRs were expressed mainly in old leaves and lower stem peels, while the expression situation between different subfamilies of GSs and GOGATs was more complicated.
conclusions: Differential expression of NAGs suggested that they might be involved in abiotic stresses. The above results greatly enriched our understanding of NAGs' molecular characteristics and provided central gene resources for NAGs-mediated NUE improvement in rapeseed.