Amphiphysin and endophilin are two members of the N-BAR protein family. We have reported membrane interactions of the helix 0 of endophilin (H0-Endo). Here we investigate membrane modulations caused by the helix 0 of amphiphysin (H0-Amph). Electron paramagnetic resonance (EPR) spectroscopy was used to explore membrane properties. H0-Amph was found to reduce lipid mobility, make the membrane interior more polar, and decrease lipid chain orientational order. The EPR data also showed that for anionic membranes, H0-Endo acted as a more potent modulator. For instance, at peptide-to-lipid (P/L) ratio of 1/20, the peak-to-peak splitting was increased by 0.27 G and 1.89 G by H0-Amph and H0-Endo, respectively. Simil... More
Amphiphysin and endophilin are two members of the N-BAR protein family. We have reported membrane interactions of the helix 0 of endophilin (H0-Endo). Here we investigate membrane modulations caused by the helix 0 of amphiphysin (H0-Amph). Electron paramagnetic resonance (EPR) spectroscopy was used to explore membrane properties. H0-Amph was found to reduce lipid mobility, make the membrane interior more polar, and decrease lipid chain orientational order. The EPR data also showed that for anionic membranes, H0-Endo acted as a more potent modulator. For instance, at peptide-to-lipid (P/L) ratio of 1/20, the peak-to-peak splitting was increased by 0.27 G and 1.89 G by H0-Amph and H0-Endo, respectively. Similarly, H0-Endo caused a larger change in the bilayer polarity than H0-Amph (30% versus 12% at P/L = 1/20). At P/L = 1/50, the chain orientational order was decreased by 26% and 66% by H0-Amph and H0-Endo, respectively. The different capabilities were explained by considering hydrophobicity score distributions. We employed atomic force microscopy to investigate membrane structural changes. Both peptides caused the formation of micron-sized holes. Interestingly, only H0-Amph induced membrane fusion as evidenced by the formation of high-rise regions. Lastly, experiments of giant unilamellar vesicles showed that H0-Amph and H0-Endo generated thin tubules and miniscule vesicles, respectively. Together, our studies showed that both helices are effective in altering membrane properties; the observed changes might be important for membrane curvature induction. Importantly, comparisons between the two peptides revealed that the degree of membrane remodeling is dependent on the sequence of the N-terminal helix of the N-BAR protein family.