The plant 14-3-3 proteins are essential for many biological processes and responses to abiotic stress. We performed genome-wide identification and analysis of the 14-3-3 family genes in tomato. To explore the properties of the thirteen Sl14-3-3 found in the tomato genome, their chromosomal location, phylogenetic, and syntenic relationships were analyzed. The Sl14-3-3 promoters were found to have a number of growth-, hormone-, and stress-responsive cis-regulatory elements. Moreover, the qRT-PCR assay revealed that Sl14-3-3 genes are responsive to heat and osmotic stress. Subcellular localization experiments evidenced that the SlTFT3/6/10 proteins occur in the nucleus and cytoplasm Additional analysis on Sl14-3-3... More
The plant 14-3-3 proteins are essential for many biological processes and responses to abiotic stress. We performed genome-wide identification and analysis of the 14-3-3 family genes in tomato. To explore the properties of the thirteen Sl14-3-3 found in the tomato genome, their chromosomal location, phylogenetic, and syntenic relationships were analyzed. The Sl14-3-3 promoters were found to have a number of growth-, hormone-, and stress-responsive cis-regulatory elements. Moreover, the qRT-PCR assay revealed that Sl14-3-3 genes are responsive to heat and osmotic stress. Subcellular localization experiments evidenced that the SlTFT3/6/10 proteins occur in the nucleus and cytoplasm Additional analysis on Sl14-3-3 putative interactor proteins revealed a number of prospective clients that potentially participate in stress reactions and developmental processes. Furthermore, overexpression of an Sl14-3-3 family gene, SlTFT6, improved tomato plants thermotolerance. Taken together, the study provides basic information on tomato 14-3-3 family genes in plant growth and abiotic stress response (high temperature stress), which can be helpful to further study the underlying molecular mechanisms. This article is protected by copyright. All rights reserved.