Galaxy银河|澳门官网·登录入口

至今,GenScript的服务及产品已被Cell, Nature, Science, PNAS等1300多家生物医药类杂志引用近万次,处于行业领先水平。NIH、哈佛、耶鲁、斯坦福、普林斯顿、杜克大学等约400家全球著名机构使用GenScript的基因合成、多肽服务、抗体服务和蛋白服务等成功地发表科研成果,再次证明GenScript 有能力帮助业内科学家Make research easy.

Structural basis of NINJ1-mediated plasma membrane rupture in cell death

Nature. 2023-05; 
Morris Degen, José Carlos Santos, Kristyna Pluhackova, Gonzalo Cebrero, Saray Ramos, Gytis Jankevicius, Ella Hartenian, Undina Guillerm, Stefania A Mari, Bastian Kohl, Daniel J Müller, Paul Schanda, Timm Maier, Camilo Perez, Christian Sieben, Petr Broz, Sebastian Hiller
Products/Services Used Details Operation
Plasmid DNA Preparation … -type mNINJ1 was obtained from a commercial plasmid (SinoBiological, MG53796-NF), and cDNAs encoding the different mNINNJ1 mutants were commercially synthesized (GenScript)… Get A Quote

摘要

Eukaryotic cells can undergo different forms of programmed cell death, many of which culminate in plasma membrane rupture as the defining terminal event. Plasma membrane rupture was long thought to be driven by osmotic pressure, but it has recently been shown to be in many cases an active process, mediated by the protein ninjurin-1 (NINJ1). Here we resolve the structure of NINJ1 and the mechanism by which it ruptures membranes. Super-resolution microscopy reveals that NINJ1 clusters into structurally diverse assemblies in the membranes of dying cells, in particular large, filamentous assemblies with branched morphology. A cryo-electron microscopy structure of NINJ1 filaments shows a tightly packed fence-like a... More

关键词

XML 地图