The study aimed to investigate whether linoleic acid could improve the intestinal barrier function of squabs under weaning stress conditions. Totally 320 7-d-old weaned squabs were randomly divided into four treatment groups, including control group (CON), 0.7% linoleic acid addition group (LA007), 1.4% linoleic acid addition group (LA014) and 2.1% linoleic acid addition group (LA021). At 21 d, eight squabs were randomly selected from each treatment group for sampling and determination. The results showed that adding linoleic acid could improve (P < 0.05) the body weight of weaned squabs, and LA014 had the best effect. With the increase of linoleic acid dosage, villi height and villi area increased linearly or ... More
The study aimed to investigate whether linoleic acid could improve the intestinal barrier function of squabs under weaning stress conditions. Totally 320 7-d-old weaned squabs were randomly divided into four treatment groups, including control group (CON), 0.7% linoleic acid addition group (LA007), 1.4% linoleic acid addition group (LA014) and 2.1% linoleic acid addition group (LA021). At 21 d, eight squabs were randomly selected from each treatment group for sampling and determination. The results showed that adding linoleic acid could improve (P < 0.05) the body weight of weaned squabs, and LA014 had the best effect. With the increase of linoleic acid dosage, villi height and villi area increased linearly or quadratically (P < 0.05), and reached the maximum in LA021 or LA014, respectively. The linoleic acid supplementation could improve the intestinal tight junction of weaned squabs, and the LA014 was the most significant (P < 0.05). With the linoleic acid increasing, the levels of intestinal IL-6 and TNF-α decreased linearly (P < 0.05), while intestinal IL-10 increased quadratically (P < 0.05) and reached the maximum in LA014. Serum endotoxin and diamine oxidase levels decreased linearly (P < 0.05) and reached the lowest level in LA014. The ultrastructure of villi revealed that the length of ileal microvilli in LA014 was significantly increased (P < 0.05) and the microvilli became dense, and the mitochondria in epithelial cells returned to normal state. Further exploring the mechanism of linoleic acid alleviating intestinal injury caused by weaning stress in squabs, it was found that linoleic acid down-regulated (P < 0.05) the relative protein expression of TLR4, MyD88, phosphorylated JNK, and phosphorylated p38, reducing secretion of pro-inflammatory factors IL-6 and TNF-α. This study indicated that linoleic acid could alleviate intestinal barrier injury of early weaned squabs by down-regulating TLR4-MyD88-JNK/p38-IL6/TNF-α pathway.